

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Contributor Covenant Code of Conduct


Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience,
nationality, personal appearance, race, religion, or sexual identity and
orientation.




Our Standards

Examples of behavior that contributes to creating a positive environment
include:


	Using welcoming and inclusive language


	Being respectful of differing viewpoints and experiences


	Gracefully accepting constructive criticism


	Focusing on what is best for the community


	Showing empathy towards other community members




Examples of unacceptable behavior by participants include:


	The use of sexualized language or imagery and unwelcome sexual attention or
advances


	Trolling, insulting/derogatory comments, and personal or political attacks


	Public or private harassment


	Publishing others' private information, such as a physical or electronic
address, without explicit permission


	Other conduct which could reasonably be considered inappropriate in a
professional setting







Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.




Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.




Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at info@levit.be. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project's leadership.




Attribution

This Code of Conduct is adapted from the Contributor Covenant homepage [http://contributor-covenant.org], version 1.4,
available at http://contributor-covenant.org/version/1/4







          

      

      

    

  

    
      
          
            
  
The MIT License (MIT)

Copyright © 2016 drf-form's github organisation

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.





          

      

      

    

  

    
      
          
            
  
The Endpoint class

As with Django's ModelAdmin class you can also define your own Endpoint class and
register it with the router instead of registering a model.

In simple terms, Endpoint's are a wrapper around a DRF's ModelViewSet and
ModelSerializer.

DRF-Schema-Adapter allows for auto-discovery of Endpoint's located in endpoints.py file. You can
either register them directly on the router or use the @register decorator.

# my_app/endpoints.py
from drf_auto_endpoint.endpoints import Endpoint
from drf_auto_endpoint import register, router
from .models import MyModel, OtherModel

@register
class MyModelEndpoint(Endpoint):

    model = MyModel
    read_only = True
    fields = ('id', 'name', 'category')


class OtherModelEndpoint(Endpoint):

    model = OtherModel
    list_me = False


router.register(endpoint=OtherModelEndpoint)





# urls.py
from drf_auto_endpoint.router import router

urlpatterns = [
    url(r'^api/', include(router.urls)),
]






Attributes


model

required

The Model class the endpoint should represent




fields

defaults to all fields from the model

A tuple or list of field that should be present. This is the same attribute as what you would give
to a ModelSerializer's Meta class.




extra_fields

defaults to an empty list

A tuple or list of extra fields that are not detected by the default Endpoint class. This is generally
used to add model @property's to your serializer.




include_str

default: True

Boolean indicated whether or not __str__ should be included in the automatically-generated list of fields.




read_only

default: False

Boolean indicating whether this Endpoint should be a read-only Endpoint or not.




permission_classes

default: None

A list or tuple of permission classes to apply to th Endpoint.
Similar to the permission_classes attribute you would use on a
DRF ViewSet [http://www.django-rest-framework.org/api-guide/permissions/#setting-the-permission-policy]




base_serializer

default: ModelSerializer (from settings.DRF_AUTO_BASE_SERIALIZER)

Endpoint's will automatically generate serializers based on ModelSerializer.
You can override this behavior and pass in your own base_serializer tha will be used to generate
the serializer associated with the Endpoint.

If all your Endpoint's are going to be using the same base_serializer, you may also want to change
the default DRF_AUTO_BASE_SERIALIZER in your settings.




serializer

default: None

Instead of letting the Endpoint automatically generate a serializer you can pass in a serializer class
of your own using the serializer attribute




base_viewset

default: ReadOnlyModelViewSet (if read_only = True ) or ModelViewSet
(from settings.DRF_AUTO_BASE_VIEWSET and settings.DRF_AUTO_BASE_READONLY_VIEWSET)

Endpoint's will automatically generate viewsets based on ModelViewSet or ReadOnlyModelViewSet.
You can override this behavior and pass in your own base_viewset that will be used to generate
the viewset associated with the Endpoint.

If all your Endpoint's are going to be using the same base_viewset (readonly or not), you may also
want to change the default DRF_AUTO_BASE_VIEWSET and/or DRF_AUTO_BASE_READONLY_VIEWSET in your
settings.




viewset

default: None

Instead of letting the Endpoint automatically generate a viewset you can pass in a viewset class
of your own using the viewset attribute.




filter_fields

default: None

A list or tuple containing a list of fields the Endpoint should be able to filter on.
Similar to the filter_fields attribute you would pass to a ViewSet using a
DjangoFilterBackend [http://www.django-rest-framework.org/api-guide/filtering/#djangofilterbackend]




search_fields

default: None

A list or tuple containing a list of textual fields the Endpoint should be able to search on.
Similar to the search_fields attribute you would pass to a ViewSet using a
SearchFilter backend [http://www.django-rest-framework.org/api-guide/filtering/#searchfilter]




ordering_fields

default: None

A list or tuple containing a list of fields the Endpoint should be able to sort on.
Similar to the oredering_fields attribute you would pass to a ViewSet using an
OrderingFilter backend [http://www.django-rest-framework.org/api-guide/filtering/#orderingfilter]




page_size

default: None

An integer representing the number of records that should be present per result page.
Similiar to the page_size attribute you would set on a custom
PageNumberPagination [http://www.django-rest-framework.org/api-guide/pagination/#pagenumberpagination]
class.




fieldsets :warning: Only used by metadata

defaults to a single fieldset without title containing the same fields as the fields attribute

A list or tuple containing the list of fields to use. Somewhat similar to the list of fields you would
set as
fieldsets attribute of a ModelAdmin class [https://docs.djangoproject.com/en/1.10/ref/contrib/admin/#django.contrib.admin.ModelAdmin.fieldsets]
while more powerfull as you are free to describe any number of levels of nested records here.




fields_annotation :warning: Only used by metadata

default to an empty dict

A dictionary containain field annotations. annotation can be placeholder and/or help. Those values

Example:

{
    'name': {
        'placeholder': 'Product name',
        'help': 'The name of your product'
    },
    'category': {
        'placeholder': 'Product category',
    }
}








cutom_actions :warning: Only used by metadata

defaults to an empty list

A list or tuple of dictionaries descibing custom actions available on each reacord. You can also declare
custom actions by using the @custom_action or
@wizard decorators.
Custom actions declared using any of these 2 decorators will automatically be added to the list of
custom_actions at runtime.




bulk_actions :warning: Only used by metadata

defaults to an empty list

A list or tuple of dictionaries descibing bulk actions available on a set of reacords. You can also
declare bulk actions by using the @bulk_action decorator.
Bulk actions declared using this decorator will automatically be added to the list of bulk_actions at
runtime.




save_twice :warning: Only used by metadata

default: False

Used to indicated to the frontend that this model should be saved twice (once before and once after related models) for new records or after having saved the related models for existing records.
This is useful for models that have a oneToMany
relationship to a model (let's call it employees) and a foreignKey to that same model (let's call it favourite).




sortable_by :warning: Only used by metadata

default: None

The name of the field by which models in this endpoint can be re-ordered (usually position).




list_me :warning: Only used by metadata

default: True

Whether or not this endpoint should eb listed by the OPTIONS call to the api root.






Decorators for cutom Endpoint's

All decorators accept any number of keyword arguments. Those arguments will be translated into a
dictionary and made available as such for OPTIONS call to their relative Endpoint when using
DRF-schema-adapter's metadata capailities.

Although, you can pass any number of keyword arguments to the decorator, some of those arguments will
be interpreted in a special manner:


Decorator special keyword arguments


method

This keyword argument will not be added to the dictionary published by metadata but
will be used instead to determine what HTTP method/verb this action should be linked to. It defaults to
'GET' for custom and bulk actions and 'POST' for wizard's.




type

This keyword argument will be added to the dictonary published by metadata even if not
provided. It defaults to 'request' for custom and bulk actions and to to 'wizard' for wizards.




icon_class

This keyword argument will be added to the dictonary published by metadata even if not
provided. It defaults to the value of the DRF_AUTO_ACTION_ICON_CLASS setting ('fa fa-cog') by
default.




btn_class

This keyword argument will be added to the dictonary published by metadata even if not
provided. It defaults to the value of the DRF_AUTO_ACTION_BTN_CLASS setting ('btn btn-default') by
default.




text

This keyword argument will be added to the dictonary published by metadata even if not
provided. It defaults to the "capfirst'd" name of the decorated method.






@custom_action

This decorator has somewhat similar properties than
DRF's ViewSet method decorator @detail_route [http://www.django-rest-framework.org/api-guide/viewsets/#marking-extra-actions-for-routing]
except it is meant to be use ond Endpoint's and with the added functionality of adding that particular
method directly to the custom_actions of the Endpoint.

Custom actions created with this decorator will also yield two extra property to their output dictionary (metadata):


	url: the url this action is linked to


	verb: the HTTP verb to be used to call this method







@bulk_action

This decorator has somewhat similar properties than
DRF's ViewSet method decorator @list_route [http://www.django-rest-framework.org/api-guide/viewsets/#marking-extra-actions-for-routing]
except it is meant to be used on Endpoint's and with the added functionality of adding that particular
method directly to the bulk_actions of the Endpoint.

As with the @custom_action decorator, bulk actions created with this @bulk_action will yield two
extra property to their output dictionary(metadata):


	url: the url this action is linked to


	verb: the HTTP verb to be used to call this method







@wizard

Wizard's are meant to be used for actions that require extra input on the frontend. Like moving a
calendar appointment would require the "target date".

Wizard's are also somewhat similar to
vDRF's ViewSet method decorator @detail_route [http://www.django-rest-framework.org/api-guide/viewsets/#marking-extra-actions-for-routing]
with the difference that they use an extra serializer to validate the data sent from the frontend.

@wizard decorators (unlike the previous 2) take 2 required arguments:


	target_model: the model class this wizard relates to. This will most likely be the
same class as the Endpoint's model.


	serializer: the serializer class used to validate the data comming from the frontend. This serializer will be availaible from inside the method using EndpointClass.method_name.serializer




Similarly to the other decorators in this package, @wizard will yield extra information into their
metadata output dictionary:


	url: the url this action is linked to


	verb: the HTTP verb to be used to call this method


	params: a dictionary similar to an endpoint's metada itself; including:


	needs: the extra models needed in order to render a form matching the wizard's serializer


	fieldsets: similar to an endpoint's fieldsets, describes the arrangement of the fields corresponding to the wizard's serializer


	fields: similar to an endpoint's fields, fully describes the fields corresponding to the wizard's serializer


	model: the "model name" associated to the wizard's serializer; can be used to load an on-the-flygenerated model definition for the frontend framework
















          

      

      

    

  

    
      
          
            
  
drf_auto_endpoint

drf_auto_endpoint's main feature is to provide a router on which you can register Model's directly.
Not unlike Model's directly in Django admin.'

Registering a Model on the router implicitely creates an Endpoint which in turn uses
factory methods to create a ModelViewSet and a ModelSerializer corresponding to the registered Model.

This is great for prototyping but as your application progresses you'll probably want to customie those endpoints.
Some customization can be done passing parameters directly to the router when registering models.


	read_only: boolean, indicates whether this endpoint should be read_only or not


	fields: a list of fields that will be available on the endpoint


	base_serializer: a base serializer class to use instead of the default (ModelSerialier)


	serializer: a custom serializer call that will be used to create the endpoint.


	include_str: a boolean indicating whether or not __str__ should be added to the serialier's fields list


	fieldsets: a tuple containing the list of fields.
metadata.


	filter_fields: a tuple containing a list of fields on which the endpoint will accept filtering


	search_fields: a tuple containing a list of fields on which the endpoint will accept searching
(text fields only)


	ordering_fields: a tuple containing a list of fields on which the endpoint will accept ordering


	page_size: the number of records to render at once (automatically activates pagination)


	permission_classes: a tuple containing the list of DRF permission classes to use


	url: the base url for the viewset


	viewset: the viewset class to use instead of the auto-generated one


	base_viewset: a base viewset class to use instead of the defaults (ModelViewSet or
ReadOnlyModelViewSet)


	fields_annotation: a dictionary with fieldnames as keys and annotation dictionaries as values
Right now, the only annotation type which are supported are placeholder and help


	list_me: a Boolean value indicating whether or not that endpoint should be listed in the APIRoot's metadata




Now passing too many parameters to the router in your urls.py is usually not the best practice and when
your endpoints start getting more complex, we recommend using a custom Endpoint class





          

      

      

    

  

    
      
          
            
  
The metadata classes and mixin

When building a frontend-framework-based or mobile application,
usually the models you define on the frontend or the data you receive
from your DRF backend isn't enough to be able to create forms or lists.
This is where the metadata classes and mixin proided by DRF-schema-adapters
comes to the rescue by providing extra information when calling the OPTIONS
method on an endpoint's root.

DRF-schema-adapters provides 2 metadata classes AutoMetadata (which inherits
from DRF's SimpleMetadata class [http://www.django-rest-framework.org/api-guide/metadata/])
and MinimalAutoMetadata (which inherits from DRF's BaseMetadata class).
Both of those classes use the AutoMetadataMixin class that you can also apply to your own metadata
classes.

To use the metadata feature of DRF-schema-adapters, you'll first have to change DRF's default
settings:

## settings.py

...
REST_FRAMEWORK = {
    'DEFAULT_METADATA_CLASS': 'drf_auto_endpoint.metadata.AutoMetadata',
}





Any of the two provided metadata classes (or your own metadata class using AutoMetadataMixin)
will provide an output similar to this when calling OPTIONS on an endpoint:

[
    {
        "validation": {
            "required": false
        },
        "read_only": true,
        "type": "number",
        "extra": {},
        "key": "id",
        "ui": {
            "label": "Id"
        }
    },
    {
        "validation": {
            "required": true,
            "max": 255
        },
        "read_only": false,
        "type": "text",
        "extra": {},
        "key": "name",
        "ui": {
            "label": "Name",
            "placeholder": "Enter your name here"
        }
    },
    {
        "validation": {
            "required": true
        },
        "related_endpoint": "sample/category",
        "read_only": false,
        "type": "foreignkey",
        "extra": {},
        "key": "category",
        "ui": {
            "label": "Category"
        }
    },
    {
        "validation": {
            "required": false
        },
        "read_only": false,
        "type": "select",
        "extra": {},
        "choices": [
            {
                "label": "Sellable",
                "value": "s"
            },
            {
                "label": "Rentable",
                "value": "r"
            }
        ],
        "key": "product_type",
        "ui": {
            "label": "Product Type"
        }
    },
    {
        "validation": {
            "required": false
        },
        "read_only": true,
        "type": "text",
        "extra": {},
        "key": "__str__",
        "ui": {
            "label": "Product"
        }
    }
]





Any of the two provided metadata classes will provide an output similar this when calling OPTIONS on the root of the api.

{
    "endpoints": [
        "crm/companies",
        "crm/contacts",
        "crm/contactmechanisms",
        "products/categories",
        "products/products",
        "accounting/invoices",
        "accounting/invoicelines"
    ],
    "applications": [
        {
            "models": [
                {
                    "singular": "invoice",
                    "endpoint": "accounting/invoices",
                    "name": "invoices"
                }
            ],
            "name": "accounting"
        },
        {
            "models": [
                {
                    "singular": "category",
                    "endpoint": "products/categories",
                    "name": "categories"
                },
                {
                    "singular": "product",
                    "endpoint": "products/products",
                    "name": "products"
                }
            ],
            "name": "products"
        },
        {
            "models": [
                {
                    "singular": "company",
                    "endpoint": "crm/companies",
                    "name": "companies"
                },
                {
                    "singular": "contact",
                    "endpoint": "crm/contacts",
                    "name": "contacts"
                }
            ],
            "name": "crm"
        }
    ]
}





The exact output depends on the Adapter you choose to use. Currently DRF-schama-adapters supports
3 different adapters.


Adapters


BaseAdapter

The BaseAdapter produces an output usuable with JSON Schema [http://json-schema.org/].
This is the default adapter.

BaseAdapter will produce an output similar to the one above.




AngularFormlyAdapter

The AngularFormlyAdapter is destined to be used with angular-formly [http://angular-formly.com/].
To use this adapter, you'll have to enable it in your settings first.

## settings.py

...
DRF_AUTO_METADATA_ADAPTER = 'drf_auto_endpoint.adapters.AngularFormlyAdapter'





This adapter will have a slightly different output:

[
    {
        "key": "id",
        "type": "input",
        "templateOptions": {
            "type": "number",
            "required": false,
            "label": "Id"
        },
        "read_only": true
    },
    {
        "key": "name",
        "type": "input",
        "templateOptions": {
            "label": "Name",
            "type": "text",
            "placeholder": "Enter your name here",
            "required": true,
            "max": 255
        },
        "read_only": false
    },
    {
        "key": "category",
        "type": "input",
        "templateOptions": {
            "type": "foreignkey",
            "required": true,
            "label": "Category"
        },
        "read_only": false
    },
    {
        "key": "product_type",
        "type": "select",
        "templateOptions": {
            "type": "select",
            "required": false,
            "label": "Product Type"
        },
        "read_only": false
    },
    {
        "key": "__str__",
        "type": "input",
        "templateOptions": {
            "type": "text",
            "required": false,
            "label": "Product"
        },
        "read_only": true
    }
]








EmberAdapter

The EmberAdapter was built to use with
ember-cli-crudities [https://bitbucket.org/levit_scs/ember-cli-dynamic-model]
and
ember-cli-dynamic-model [https://bitbucket.org/levit_scs/ember-cli-dynamic-model].

To use the EmberAdapter you'll also have to enable it in your settings.

## settings.py

...
DRF_AUTO_METADATA_ADAPTER = 'drf_auto_endpoint.adapters.EmberAdapter'





It's output is somewhat fuller as it is intended to render a full "admin-like" application and
not just single forms; it looks like this.

{
  "fields": [
  {
            "extra": {},
            "readonly": true,
            "required": false,
            "name": "id",
            "widget": "number",
            "translated": false,
            "label": "Id"
        
  },
  {
    "extra": {
                "placeholder": "Enter your name here"
            
    },
            "readonly": false,
            "required": true,
            "name": "name",
            "widget": "text",
            "translated": false,
            "label": "Name"
        
  },
  {
    "extra": {
                "related_model": "sample/category"
            
    },
            "readonly": false,
            "required": true,
            "name": "category",
            "widget": "foreignkey",
            "translated": false,
            "label": "Category"
        
  },
  {
    "extra": {
      "choices": [
      {
                        "value": "s",
                        "label": "Sellable"
                    
      },
      {
                        "value": "r",
                        "label": "Rentable"
                    
      }
                
      ]
            
    },
            "readonly": false,
            "required": false,
            "name": "product_type",
            "widget": "select",
            "translated": false,
            "label": "Product Type"
        
  },
  {
            "extra": {},
            "readonly": true,
            "required": false,
            "name": "__str__",
            "widget": "text",
            "translated": false,
            "label": "Product"
        
  }
    
  ],
  "list_display": [
        "__str__"
    
  ],
  "filter_fields": [],
  "search_enabled": false,
  "languages": [],
  "ordering_fields": [],
  "needs": [
    {
      "app": "sample",
      "singular": "category",
      "plural": "categories"
      
    }
  
  ],
  "fieldsets": [
    {
      "fields": [
        {
          "name": "name"
                  
        },
        {
          "name": "category"
                  
        },
        {
          "name": "product_type"
                  
        }
            
      ],
      "title": null
    }
  ],
  "list_editable": [],
  "sortable_by": null,
  "translated_fields": [],
  "save_twice": false,
  "custom_actions": [],
  "bulk_actions": [],
}










Creating a custom adapter

When creating a custom adapter, the first thing you'll want to do is import the base class and tools you will need:

from drf_auto_endpoint.adapters import BaseAdapter, MetaDataInfo, PROPERTY, GETTER





By default, the BaseAdapter produces a result containing only fields.
If you'd like to get more information like actions or languages, you'll have to override the
metadata_info property of the adapter.
metadata_info is a list of MetaDataInfo objects.
A MetaDataInfo object takes 3 arguments:


	the name of the property or method (as in get_&lt;name&gt;

()) to call on the endpoint


	whether the name refers to a PROPERTY or a GETTER


	a default value (used to produce metadata on non-model endpoints or viewsets)




Here is a list of existing properties and getters that can be used:


	'fields', GETTER, []


	'fieldsets', GETTER, []


	'list_display', GETTER, []


	'filter_fields', GETTER, []


	'languages', GETTER, []


	'ordering_fields', GETTER, []


	'needs', GETTER, []


	'list_editable', GETTER, []


	'sortable_by', GETTER, []


	'translated_fields', GETTER, []


	'custom_actions', GETTER, []


	'bulk_actions', GETTER, []


	'save_twice', PROPERTY, False


	'search_enabled', PROPERTY, False




If you need more information, feel free to add properties and getters on your custom Endpoint.

Finally, if the output format of the default adapter doesn't suite you,
you will probably want to override the adapt_field, render_root or render method on your custom adapter.


adapt_field

adapt_field is a class method that receives a "field-type" dictionary and output a "field-type" dictionary.
adapt_field is called on each field by BaseAdapter.render.

Example custom implementation:

from drf_auto_endpoint.adapters import BaseAdapter


class MyAdapter(BaseAdapter)
    @classmethod
    def adapt_field(cls, field):
        ui = field.pop('ui')
        field['display_name'] = ui['label']
        return field





The render method receives a raw dictionary as input and is expected to return a raw dictionary as output.




render

render is the method used to adapt the default metadata output to your frontend's needs.
BaseAdapter.render only return the contend of 'fields' so you will have to override it if you want
to get metadata_info other than 'fields'.

Example custom implementation:

from drf_auto_endpoint.adapters import BaseAdapter


class MyAdapter(BaseAdapter)
    def render(self, config):
        config['fields'] = super(MyAdapter, self).render(config)
        return config








render_root

render_root is similar to render but is only used to render metadata for the API root

Example custom implementation:

from drf_auto_endpoint.adapters import BaseAdapter


class MyAdapter(BaseAdapter)
    def render_root(self, config):
        config = super(MyAdapter, self).render(config)
        config['bogus'] = 'adapted'
        return config








Full sample custom Endpoint and Adapter

from random import randint

from django.utils import timezone

from drf_auto_endpoint.endpoints import Endpoint
from drf_auto_endpoint.adapters import BaseAdapter, MetaDataInfo, PROPERTY, GETTER


class CustomEndpoint(Endpoint):

    @property
    def silly_prop(self):
        return 'silly'

    def get_random_array(self):
        rv = []
        for i in range(randint(1, 10)):
            rv.append(randint(1, 100))
        return rv


class CustomAdapter(BaseAdapter):

    metadata_info = [
          MetaDataInfo('fields', GETTER, []),
          MetaDataInfo('list_display', GETTER, []),
          MetaDataInfo('filter_fields', GETTER, []),
          MetaDataInfo('search_enabled', PROPERTY, False),
          MetaDataInfo('silly_prop', PROPERTY, 'Not so silly after all'),
          MetaDataInfo('random_array', GETTER, []),
    ]

    @classmethod
    def adapt_field(cls, field):
        ui = field.pop('ui')
        field['display_name'] = ui['label']
        return field

    def render(self, config):
        config['fields'] = super(MyAdapter, self).render(config)
        config['silly_property'] = config.pop('silly_prop')
        return config

    def render_root(self, config):
        config = super(MyAdapter, self).render(config)
        config['rendered_at'] = timezone.now().strftime('%Y-%M-%d %H:%m:%S')
        return config













          

      

      

    

  

    
      
          
            
  
Exporter-app

DRF-schema-adapters also allows you to export your endpoint ('s serialier definition) to frontend
frameworks models (Ember.data models, Angular modules, angular-formly json files, Mobx+Axios models and
stores definitions, ...).
This can be done in 2 different ways:


	on-the-fly generation


	on-disk files generation




Before you are able to use any of these features, you'll have to enable export-app in your setting.py

## settings.py

...
INSTALLED_APPS = (
    ...
    'export_app',
)






Configuration


EXPORTER_ADAPTER

Default: `export_app.adapters.EmberAdapter``

Used by: Dynamic & on-disk generation

If you wish to use another adapter, you'll
have to configure it in your settings.py as well:

## settings.py

EXPORTER_ADAPTER = 'export_app.adapters.MobxAxiosAdapter'





or specify it on the command-line with --adapter &lt;adapter_name&gt;.

If you are using one of the provided adapter, you can simply specify them using their classname eg:

./manage.py export --adapter AngularAdapter sample/categories

If you are using a third-party adapter, you'll have to specify the full dotted path to the adapapter eg:

./manage.py export --adapter third_party.very_cool.Adapter sample/categories




EXPORTER_ROUTER_PATH

Default: ``'urls.router'`

Used by: Dynamic & on-disk generation

The python path to the router on which you registered your ViewSet's




EXPORTER_FRONT_APPLICATION_NAME

Default: 'djember'

Used by: Dynamic generation only

The name of your frontend application or modulePrefix (eg: found in config/environment.js of an ember app folder)




EXPORTER_FRONT_APPLICATION_PATH

Default: '../front'

Used by: On-disk generation only




EXPORTER_APP_BACK_API_BASE

Default: '/api'

Used by On-disk generation only (AngularAdapter and MobxAxiosAdapter)

Relative path from your Django project base to your frontend application base directory.




EXPORTER_FIELD_TYPE_MAPPING

Default: determined by the adapter

Used by: Dynamic & on-disk generation

A dictionary mapping DRF field serializer class names to frontend property types. An mapping you declare in this dictionnary will either override the default one or be added to it.




EXPORTER_FIELD_DEFAULT_MAPPING

Default: determined by the adapter

Used by: Dynamic & on-disk generation

string repesenting the frontend property type the export should default to when the DRF field serializer in not found in EXPORTER_FIELD_TYPE_MAPPING






Usage


On-the-fly generation (currently only available with EmberAdapter)

In order to generate js files on the fly, you'll have import the urls from the project and add them
to your urlpatterns.

# urls.py

from export_app import urls as export_urls, settings as export_settings
...

urlpatterns = [
    ...
    url(r'^models/', include(export_urls, namespace=export_settings.URL_NAMESPACE)),
]





For each ViewSet (Ember expects the same endpoint for CRUD operations, so it's better to use
ViewSet's) or Endpoint registered on your router, this url setting will provide a corresponding
ember js model.

If you have registered the following Viewset:
router.register('categories', CategoryViewSet)

The corresponding (ES5) Ember model definition will now be available at
http://localhost:8000/models/categories.js

This functionality is meant to be used with
ember-cli-dynamic-model [https://bitbucket.org/levit_scs/ember-cli-dynamic-model] and
the recommended usage is to register all your ViewSet's or Endpoint's using the
&lt;

app_name&gt;

/&lt;

model_name_correct_english_plural&gt;

 as in my_app/categories.
(This is automatically done for you if you are using drf_auto_endpoint's router registration
capabilities with Model's or Endpoint's)




On-disk files generation

export_app also provides a management command to generate (ES5, ES6 or ES7 depending on the adapter)
models on disk:

./manage.py export route_registered_with_the_router

So assuming you have registered the following ViewSet:

router.register('sample/categories', CategoryViewSet)

you can run:

./manage.py export sample/categories

in order to generate the corresponding model.
This command will generate on or more files (once again depending on the chosen adapter)
in you frontend application.






Adapters


EmberAdapter

Using the EmberAdapter will export the definition of the serializer linked to an endpoint to an
Ember.data model definition.

Since you might want to add computed properties or other features to an Ember model, this is done using
3 files:


	models/base/&lt;app_name&gt;/&ltmodel_name&gt;.js &lt;

- always overwritten


	models/&lt;app_name&gt;/&lt;model_name&gt;.js &lt;

 inherits from the base model, never overwritten


	tests/unit/models/&lt;app_name&gt;/&lt;model_name&gt;-test.js &lt;

 overwritten on confirmation







AngularAdapter

Using the AngularAdapter will export an Angular1 resource definition file into
modules/resources/&lt;application_name&gt;-&lt;model_name&gt;.js.




Angular2Adapter

coming soon




MetadataAdapter

Using this adapter you'll be able to dump the content of the Metadata (OPTIONS call) of an endpoint
into your frontend application in a file named data/&lt;application_name&gt;-&lt;model_name&gt;.json.

The created output will depend on the adapter you chose for drf_auto_endpoint using the
DRF_AUTO_METADATA_ADAPTER




MobxAxiosAdapter (for use with React or standalone)

Using the MobxAxiosAdapter will export the definition of the serializer linked to an endpoint to a
set of mobx "model" and mobx+axios "store".

Since you might want to ass computed value or other features to a mobx model, this will yield up to 6
different files:


	config/axios-config.js &lt;

- configuration of the endpoint base and CSRF settings: never overwritten


	stores/_base.js &lt;

- a base definition of how stores work: never overwritten


	stores/&lt;app_name&gt;&lt;model_name&gt; &lt;

- specific definition for this store: overwritten on
confirmation


	models/base/_base.js &lt;

- a base definition of how models work: never overwritten


	models/base/&lt;app_name&gt;&lt;model_name&gt; &lt;

- a model containing the same list of fields as
the serializer: always overwritten


	models/&lt;app_name&gt;&lt;model_name&gt; &lt;

 a enpty model that inherits from it base counterpart:
never overwritten












          

      

      

    

  _static/up-pressed.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/up.png





_static/comment-close.png





_static/file.png





_static/minus.png





_static/down.png





_static/plus.png





_static/ajax-loader.gif





